Binary Neutron Star Merger rate via the Luminosity Function of short Gamma Ray Bursts

Debdutta Paul

Tata Institute of Fundamental Research, Mumbai, India

26th March, 2019

AstroSat

AstroSat team

Bhalerao+'17

GRB151006A

Data

Simulations

Rao+'16

How many GRBs can it detect?

Abbott+'17e

Kasliwal+'17

The Luminosity Function (LF), $\Phi(L)$

 $\mathrm{d}\boldsymbol{N} \equiv \boldsymbol{T} \Delta \Omega \times \boldsymbol{R}(\boldsymbol{z}) \mathrm{d}\boldsymbol{V} \times \boldsymbol{\Phi}(\boldsymbol{L}) \mathrm{d}\boldsymbol{L},$

with

$$\dot{R}(z) = f_{\mathrm{B}} C \Psi(z),$$
 $\Psi(z) = \int_{z_{\min}(z)}^{\infty} \dot{
ho_{\star}}(z') P\left(\tau[z,z']\right) rac{\mathrm{d} au}{\mathrm{d}z'} \mathrm{d}z'.$

Aim: To model $\Phi(L)$.

Motivations:

- To measure the true source rate.
- To predict the number distribution for newer instruments.

Review: Proposed methods

- Measured redshift (*z*) distribution: Statistical limitation + selection bias.
- Measured flux (P) distribution: Intrinsic parameters (z, L) → Measured parameter (P)?
 - Limit to "flux-complete" sample: Statistical limitation.
- Different instruments give different results.

Reference	$\dot{R}(0)$ $\mathrm{yr}^{-1}\mathrm{Gpc}^{-3}$
Ghirlanda+'16 model [a]	0.13-0.24
Guetta & Piran '05	0.1-0.8
Yonetoku+'14	0.24-0.94
Ghirlanda+'16 model [c]	0.65-1.10
Coward+'12	5-13
Guetta & Piran '06	8-30

Yonetoku correlation

 $L = P 4\pi d_L(z)^2 \times k(z; \text{ spectrum})$ z is measured only for a small fraction of GRBs.

Yonetoku+'04

Long GRBs

Reference	$\dot{R}(0)$ $\mathrm{yr}^{-1}\mathrm{Gpc}^{-3}$
Amaral-Rogers+'17	0.04-0.24
Paul'18a	0.12-0.20

Short GRBs – the correlation

The correlation is tight, in spite of outliers.

Number of GRBs used

mission	redshift	number
CGRO-BATSE	pseudo	468
Fermi-GBM	pseudo	209
	measured	2
Swift-BAT	pseudo	59
	measured	19
TOTAL		757

Redshift distributions

There are only **30** GRBs with known redshift.

- Observed number of GRBs too small (30/25).
- Heavily biased due to redshift measurement selection effects.

The Luminosity Functions: models tested

1 Simple Power Law (SPL) model: $\Phi(L) = \Phi_0(L)^{-\nu}$.

2 Broken PowerLaw (BPL) model: $\Phi(L) = \Phi_0 \begin{cases} \left(\frac{L}{L_b}\right)^{-\nu_1}, & L \leq L_b \\ \left(\frac{L}{L_b}\right)^{-\nu_2}, & L > L_b. \end{cases}$

3 Exponential-Cutoff PowerLaw (ECPL) model: $\Phi_{Z}(L) = \Phi_{0} \left(\frac{L}{L_{b}}\right)^{-\nu} \exp\left[-\left(\frac{L}{L_{b}}\right)\right]$

The Luminosity Functions: models fit

<u>SPL</u>

- Ruled out for all ν ,
- against claim of Yonetoku+'14 [$\nu = 1$],
- extending Ghirlanda+'16 [ν > 2 ruled out].

<u>BPL</u>

- v₁ loosely bound below
- $\nu_2 \sim$ 1.85; $L_{\rm b} \sim$ 1.50
- consistent with 68% HDIs of G16
- no z-dependence

ECPL

- *L*_b loosely bound above
- $\nu \sim 0.65$
- both \sim same for long GRBs
- no z-dependence

Formation rate

Reference	$\dot{R}(0)$ [yr ⁻¹ Gpc ⁻³]
Ghirlanda et al. (2016), model [a]	0.13-0.24
Guetta & Piran (2005)	0.1-0.8
Yonetoku et al. (2014)	0.24-0.94
Ghirlanda et al. (2016), model [c]	0.65-1.10
present work	0.61-3.89
Coward et al. (2012)	5-13
Guetta & Piran (2006)	8-30

Binary neutron star merger (BNSM) rate – aLIGO/VIRGO

Saleem+'18

Binary neutron star merger (BNSM) rate – aLIGO/VIRGO

- lower limits [yr⁻¹]: LH: 0.95; LHV: 1.87; LHVKI: 3.11.
- Inferred rate from GW/EM170817: 1 ${\rm yr}^{-1} \implies \gtrsim 2\,{\rm yr}^{-1}$ from the next observing runs.

True sGRB and BNSM rates

- $f_{\rm B} = 1 \cos \theta_j$, where θ_j is the jet opening angle.
- $\theta_j = 3-26^\circ$ (Margutti+'12; Fong+ '12, '15).
- sGRB formation rate, $R_0 = \frac{\dot{R}(0)}{f_B} = 6-2838 \, {\rm yr}^{-1} {\rm Gpc}^{-3}$.
- Abbott+'17e: BNSMr = $320-4740 \, \mathrm{yr}^{-1} \mathrm{Gpc}^{-3}$.
- Each BNSM creates a sGRB : allowed.

True sGRB and BNSM rates

- $f_{\rm B} = 1 \cos \theta_j$, where θ_j is the jet opening angle.
- $\theta_j = 3-26^\circ$ (Margutti+'12; Fong+ '12, '15).
- sGRB formation rate, $R_0 = \frac{\dot{R}(0)}{f_B} = 6-2838 \, {\rm yr}^{-1} {\rm Gpc}^{-3}$.
- Abbott+'17e: BNSMr = $320-4740 \text{ yr}^{-1} \text{Gpc}^{-3}$.
- Each BNSM creates a sGRB : allowed.
- However, slight tension...
- What could it imply? Choked jets (Kasliwal+'17).

AstroSat-CZTI

 $\label{eq:prediction: 14-42 yr^{-1}} \ensuremath{\mathsf{Prediction: 14-42 yr^{-1}}}.$ $\ensuremath{\mathsf{Observed: }\sim 36^* \mbox{ in 2 yr}}.$

* Subjective:

initial triggered searches by Vidushi Sharma + latter systematic searches by Ajay Ratheesh [Feb'16 – Oct'17].

Publicly available tool for any new instrument.

Daksha (proposal accepted by ISRO):

- Soft [1-10 keV]: 11-12 yr⁻¹.
- Hard [20-200 keV]: **34-35** yr⁻¹.

Thank You!

Review: Ghirlanda+'16

- P, F (fluence), T_{90} , E_p from Fermi;
- D'Avanzo+'14 "flux-complete" Swift sample: z, Liso, Eiso.
- Assumptions:
 - Short GRB lightcurve = triangle.
 - Amati correlation and Yonetoku correlation parametrized.
 - Progenitor rate parametrized.
- Rules out SPL for $\nu > 2$.

The star formation rate is delayed...

$$\dot{R} = f_{\rm B} C \Psi,$$

where

$$\Psi(z) = \int\limits_{z_{
m min}(z)}^{\infty} \dot{
ho_{\star}}(z') \, P\left(au[z,z']
ight) rac{d au}{dz'} dz',
onumber \ au[z,z'] = t_{
m age}(z) - t_{
m age}(z'),$$

 $z_{\min}(z)$ given by

$$t_{
m age}(z) - t_{
m age}(z_{
m min}) = au_{
m min}.$$

...to the GRB formation rate

 $P(\tau) = \tau^{-n}$

k(z) and $L_c(z)$

Models tested against data

Broken PowerLaw (BPL):

$$\Phi(L) = \Phi_0 egin{cases} \left(\left(rac{L}{L_{
m b}}
ight)^{-
u_1}, & L \leq L_{
m b} \ \left(rac{L}{L_{
m b}}
ight)^{-
u_2}, & L > L_{
m b}. \end{cases}$$

Exponential-Cutoff PowerLaw (ECPL):

$$\Phi_{z}(L) = \Phi_{0}\left(rac{L}{L_{
m b}}
ight)^{-
u} \exp\left[-\left(rac{L}{L_{
m b}}
ight)
ight]$$

Fits: SPL details

n	parameters	BATSE	Fermi	Swift
1.0	χ^{2}_{red}	1.121 233.1	1.232 26.5	1.374 10.1
1.5	$\chi^2_{\rm red}$	1.103 276.5	1.198 35.4	1.331 10.9
2.0	χ^{2}_{red}	1.094 300.6	1.184 39.4	1.314 11.2

- Simple Power Law model ruled out for all ν,
- against claim of Yonetoku+'14 [$\nu = 1$],
- extending Ghirlanda+'16 [$\nu > 2$ ruled out].

Fits: BPL details

n	parameters		Fermi	Swift	BATSE
1.0		$\begin{array}{c} 0.48\substack{+0.22\\-0.48}\\ 1.86\substack{+1.08\\-0.20}\\ 1.52\substack{+1.58\\-0.67}\end{array}$	0.00 0.10	0.00 0.42	$\begin{array}{c} 0.17\substack{+0.05\\-0.05\\1.09 \end{array}$
1.5	$\nu_1 \\ \nu_2 \\ L_b \\ \Gamma \\ \chi^2_{red}$	$\begin{array}{c} 0.38\substack{+0.23\\-0.38}\\ 1.85\substack{+1.04\\-0.19}\\ 1.46\substack{+1.36\\-0.62}\end{array}$	0.00 0.10	0.00 0.39	$\begin{array}{c} 0.16^{+0.04}_{-0.05} \\ 1.09 \end{array}$
2.0	$\nu_1 \\ \nu_2 \\ L_b \\ \Gamma \\ \chi^2_{red}$	$\begin{array}{c} 0.34\substack{+0.23\\-0.34}\\ 1.85\substack{+1.03\\-0.19}\\ 1.45\substack{+1.32\\-0.60}\end{array}$	0.00 0.10	0.00 0.39	$\begin{array}{c} 0.15^{+0.04}_{-0.05} \\ 1.09 \end{array}$

- ν_1 loosely bound below
- $\nu_2 \sim 1.85$; $L_{
 m b} \sim 1.50$
- ν_2 , L_b independent of n
- no z-dependence
- consistent with 68% HDIs of Ghirlanda+'16

Cannot be distinguished with ECPL.

Fits: ECPL details

п	parameters		Fermi	Swift	BATSE
1.0	${\scriptstyle {\cal V}\ L_b} \ \Gamma \ \chi^2_{ m red}$	$\begin{array}{c} 0.71\substack{+0.05\\-0.36}\\ 7.42\substack{+7.21\\-1.96}\end{array}$	0.00 0.31	0.00 0.21	$0.41\substack{+0.15 \\ -0.12 \\ 0.75}$
1.5	${\scriptstyle \begin{array}{c} \nu \\ L_{b} \\ \Gamma \\ \chi^{2}_{red} \end{array}}$	$\begin{array}{c} 0.64\substack{+0.05\\-0.39}\\ 6.84\substack{+6.73\\-1.58}\end{array}$	0.00 0.39	0.00 0.19	$0.38^{+0.13}_{-0.10}\\0.82$
2.0	\mathcal{L}_{b} Γ χ^{2}_{red}	$\begin{array}{c} 0.60\substack{+0.05\\-0.38}\\ 6.61\substack{+6.09\\-1.53}\end{array}$	0.00 0.41	0.00 0.19	$0.36^{+0.12}_{-0.09}\\0.84$

- generally over-fit
- *L*_b loosely bound above
- ν ~ 0.65
- both \sim same for IGRBs!
- no z-dependence

Fits: BPL & ECPL

 $\mathrm{d} N \equiv T \Delta \Omega \times D(L,z) \times \dot{R}(z) \mathrm{d} V \times \Phi(L) \mathrm{d} L; \quad D(L,z) \propto P^{\Gamma}.$

Broken PowerLaw (BPL)

Exponential-Cutoff PowerLaw (ECPL)

Formation efficiency

n	model	$f_{ m B}C(0)$	$\dot{R}(0)$
		$[10^{-9}{ m M}_\odot^{-1}]$	$[yr^{-1}Gpc^{-3}]$
1 0	ECPL	$13.7^{+1.2}_{-3.9}$	0 68-3 80
1.0	BPL	$3.74^{+3.76}_{-1.15}$	0.00-0.09
15	ECPL	$6.45\substack{+0.39 \\ -1.32}$	0 82-3 80
1.5	BPL	$2.05^{+1.73}_{-0.58}$	0.02-0.00
20	ECPL	$3.65^{+0.26}_{-0.61}$	0.61-2.66
2.0	BPL	$1.23^{+0.94}_{-0.34}$	0.01-2.00

Choked jets...?

Kasliwal+'17